跳至主要内容

如何构建知识图谱

在本指南中,我们将介绍构建基于非结构化文本的知识图谱的基本方法。构建的图谱随后可用作 RAG 应用程序中的知识库。从高层次来看,从文本构建知识图谱的步骤如下:

  1. 从文本中提取结构化信息:模型用于从文本中提取结构化的图谱信息。
  2. 存储到图数据库:将提取的结构化图谱信息存储到图数据库,从而实现下游 RAG 应用程序。

设置

安装依赖项

yarn add langchain @langchain/community @langchain/openai neo4j-driver zod

设置环境变量

我们将在本示例中使用 OpenAI

OPENAI_API_KEY=your-api-key

# Optional, use LangSmith for best-in-class observability
LANGSMITH_API_KEY=your-api-key
LANGCHAIN_TRACING_V2=true

# Reduce tracing latency if you are not in a serverless environment
# LANGCHAIN_CALLBACKS_BACKGROUND=true

接下来,我们需要定义 Neo4j 凭据。请按照 这些安装步骤 设置 Neo4j 数据库。

NEO4J_URI="bolt://127.0.0.1:7687"
NEO4J_USERNAME="neo4j"
NEO4J_PASSWORD="password"

以下示例将创建与 Neo4j 数据库的连接。

import "neo4j-driver";
import { Neo4jGraph } from "@langchain/community/graphs/neo4j_graph";

const url = Deno.env.get("NEO4J_URI");
const username = Deno.env.get("NEO4J_USER");
const password = Deno.env.get("NEO4J_PASSWORD");
const graph = await Neo4jGraph.initialize({ url, username, password });

LLM 图谱转换器

从文本中提取图谱数据使非结构化信息能够转换为结构化格式,从而便于深入了解和更有效地浏览复杂的关系和模式。LLMGraphTransformer 通过利用 LLM 来解析和分类实体及其关系,将文本文档转换为结构化的图谱文档。LLM 模型的选择会显着影响输出,因为它决定了提取的图谱数据的准确性和细微差别。

import { ChatOpenAI } from "@langchain/openai";
import { LLMGraphTransformer } from "@langchain/community/experimental/graph_transformers/llm";

const model = new ChatOpenAI({
temperature: 0,
model: "gpt-4-turbo-preview",
});

const llmGraphTransformer = new LLMGraphTransformer({
llm: model,
});

现在,我们可以传入示例文本并检查结果。

import { Document } from "@langchain/core/documents";

let text = `
Marie Curie, was a Polish and naturalised-French physicist and chemist who conducted pioneering research on radioactivity.
She was the first woman to win a Nobel Prize, the first person to win a Nobel Prize twice, and the only person to win a Nobel Prize in two scientific fields.
Her husband, Pierre Curie, was a co-winner of her first Nobel Prize, making them the first-ever married couple to win the Nobel Prize and launching the Curie family legacy of five Nobel Prizes.
She was, in 1906, the first woman to become a professor at the University of Paris.
`;

const result = await llmGraphTransformer.convertToGraphDocuments([
new Document({ pageContent: text }),
]);

console.log(`Nodes: ${result[0].nodes.length}`);
console.log(`Relationships:${result[0].relationships.length}`);
Nodes: 8
Relationships:7

请注意,由于我们使用的是 LLM,因此图谱构建过程是非确定性的。因此,您每次执行可能会得到略有不同的结果。查看以下图像以更好地了解生成的知识图谱的结构。

graph_construction1.png

此外,您可以根据您的需求灵活定义要提取的特定类型的节点和关系。

const llmGraphTransformerFiltered = new LLMGraphTransformer({
llm: model,
allowedNodes: ["PERSON", "COUNTRY", "ORGANIZATION"],
allowedRelationships: ["NATIONALITY", "LOCATED_IN", "WORKED_AT", "SPOUSE"],
strictMode: false,
});

const result_filtered =
await llmGraphTransformerFiltered.convertToGraphDocuments([
new Document({ pageContent: text }),
]);

console.log(`Nodes: ${result_filtered[0].nodes.length}`);
console.log(`Relationships:${result_filtered[0].relationships.length}`);
Nodes: 6
Relationships:4

为了更好地了解生成的图谱,我们可以再次将其可视化。

graph_construction1.png

存储到图数据库

可以使用 addGraphDocuments 方法将生成的图谱文档存储到图数据库。

await graph.addGraphDocuments(result_filtered);

此页面是否有帮助?


您也可以留下详细的反馈 在 GitHub 上.