ChatOllama
Ollama 允许您在本地运行开源大型语言模型,例如 Llama 3.1。
Ollama 将模型权重、配置和数据捆绑到一个单一软件包中,由 Modelfile 定义。它优化了设置和配置细节,包括 GPU 使用率。
本指南将帮助您开始使用 ChatOllama
聊天模型。有关所有 ChatOllama
功能和配置的详细文档,请前往 API 参考。
概述
集成详细信息
Ollama 允许您使用各种具有不同功能的模型。以下详细信息表中的某些字段仅适用于 Ollama 提供的模型子集。
有关受支持模型和模型变体的完整列表,请参阅 Ollama 模型库 并按标签搜索。
类 | 包 | 本地 | 可序列化 | PY 支持 | 包下载 | 包最新 |
---|---|---|---|---|---|---|
ChatOllama | @langchain/ollama | ✅ | beta | ✅ |
模型功能
请参阅下面表头中的链接,了解有关如何使用特定功能的指南。
工具调用 | 结构化输出 | JSON 模式 | 图像输入 | 音频输入 | 视频输入 | 令牌级流 | 令牌使用情况 | Logprobs |
---|---|---|---|---|---|---|---|---|
✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
设置
按照 这些说明 设置并运行本地 Ollama 实例。然后,下载 @langchain/ollama
包。
凭据
如果您想获取模型调用的自动跟踪,您还可以通过取消以下注释来设置您的 LangSmith API 密钥
# export LANGCHAIN_TRACING_V2="true"
# export LANGCHAIN_API_KEY="your-api-key"
安装
LangChain ChatOllama 集成位于 @langchain/ollama
包中
请参阅 本节了解有关安装集成包的一般说明。
- npm
- yarn
- pnpm
npm i @langchain/ollama @langchain/core
yarn add @langchain/ollama @langchain/core
pnpm add @langchain/ollama @langchain/core
实例化
现在我们可以实例化我们的模型对象并生成聊天完成
import { ChatOllama } from "@langchain/ollama";
const llm = new ChatOllama({
model: "llama3",
temperature: 0,
maxRetries: 2,
// other params...
});
调用
const aiMsg = await llm.invoke([
[
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
],
["human", "I love programming."],
]);
aiMsg;
AIMessage {
"content": "Je adore le programmation.\n\n(Note: \"programmation\" is the feminine form of the noun in French, but if you want to use the masculine form, it would be \"le programme\" instead.)",
"additional_kwargs": {},
"response_metadata": {
"model": "llama3",
"created_at": "2024-08-01T16:59:17.359302Z",
"done_reason": "stop",
"done": true,
"total_duration": 6399311167,
"load_duration": 5575776417,
"prompt_eval_count": 35,
"prompt_eval_duration": 110053000,
"eval_count": 43,
"eval_duration": 711744000
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 35,
"output_tokens": 43,
"total_tokens": 78
}
}
console.log(aiMsg.content);
Je adore le programmation.
(Note: "programmation" is the feminine form of the noun in French, but if you want to use the masculine form, it would be "le programme" instead.)
链接
我们可以 链接 我们的模型与提示模板,如下所示
import { ChatPromptTemplate } from "@langchain/core/prompts";
const prompt = ChatPromptTemplate.fromMessages([
[
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
],
["human", "{input}"],
]);
const chain = prompt.pipe(llm);
await chain.invoke({
input_language: "English",
output_language: "German",
input: "I love programming.",
});
AIMessage {
"content": "Ich liebe Programmieren!\n\n(Note: \"Ich liebe\" means \"I love\", \"Programmieren\" is the verb for \"programming\")",
"additional_kwargs": {},
"response_metadata": {
"model": "llama3",
"created_at": "2024-08-01T16:59:18.088423Z",
"done_reason": "stop",
"done": true,
"total_duration": 585146125,
"load_duration": 27557166,
"prompt_eval_count": 30,
"prompt_eval_duration": 74241000,
"eval_count": 29,
"eval_duration": 481195000
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 30,
"output_tokens": 29,
"total_tokens": 59
}
}
工具
Ollama 现在为其可用模型的子集提供了对原生工具调用的支持 。以下示例演示了如何从 Ollama 模型调用工具。
import { tool } from "@langchain/core/tools";
import { ChatOllama } from "@langchain/ollama";
import { z } from "zod";
const weatherTool = tool((_) => "Da weather is weatherin", {
name: "get_current_weather",
description: "Get the current weather in a given location",
schema: z.object({
location: z.string().describe("The city and state, e.g. San Francisco, CA"),
}),
});
// Define the model
const llmForTool = new ChatOllama({
model: "llama3-groq-tool-use",
});
// Bind the tool to the model
const llmWithTools = llmForTool.bindTools([weatherTool]);
const resultFromTool = await llmWithTools.invoke(
"What's the weather like today in San Francisco? Ensure you use the 'get_current_weather' tool."
);
console.log(resultFromTool);
AIMessage {
"content": "",
"additional_kwargs": {},
"response_metadata": {
"model": "llama3-groq-tool-use",
"created_at": "2024-08-01T18:43:13.2181Z",
"done_reason": "stop",
"done": true,
"total_duration": 2311023875,
"load_duration": 1560670292,
"prompt_eval_count": 177,
"prompt_eval_duration": 263603000,
"eval_count": 30,
"eval_duration": 485582000
},
"tool_calls": [
{
"name": "get_current_weather",
"args": {
"location": "San Francisco, CA"
},
"id": "c7a9d590-99ad-42af-9996-41b90efcf827",
"type": "tool_call"
}
],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 177,
"output_tokens": 30,
"total_tokens": 207
}
}
.withStructuredOutput
对于 支持工具调用的模型,您还可以调用 .withStructuredOutput()
以从工具获取结构化输出。
import { ChatOllama } from "@langchain/ollama";
import { z } from "zod";
// Define the model
const llmForWSO = new ChatOllama({
model: "llama3-groq-tool-use",
});
// Define the tool schema you'd like the model to use.
const schemaForWSO = z.object({
location: z.string().describe("The city and state, e.g. San Francisco, CA"),
});
// Pass the schema to the withStructuredOutput method to bind it to the model.
const llmWithStructuredOutput = llmForWSO.withStructuredOutput(schemaForWSO, {
name: "get_current_weather",
});
const resultFromWSO = await llmWithStructuredOutput.invoke(
"What's the weather like today in San Francisco? Ensure you use the 'get_current_weather' tool."
);
console.log(resultFromWSO);
{ location: 'San Francisco, CA' }
JSON 模式
Ollama 还支持所有聊天模型的 JSON 模式,该模式强制模型输出仅返回 JSON。以下是如何在提取中使用此模式的示例
import { ChatOllama } from "@langchain/ollama";
import { ChatPromptTemplate } from "@langchain/core/prompts";
const promptForJsonMode = ChatPromptTemplate.fromMessages([
[
"system",
`You are an expert translator. Format all responses as JSON objects with two keys: "original" and "translated".`,
],
["human", `Translate "{input}" into {language}.`],
]);
const llmJsonMode = new ChatOllama({
baseUrl: "https://127.0.0.1:11434", // Default value
model: "llama3",
format: "json",
});
const chainForJsonMode = promptForJsonMode.pipe(llmJsonMode);
const resultFromJsonMode = await chainForJsonMode.invoke({
input: "I love programming",
language: "German",
});
console.log(resultFromJsonMode);
AIMessage {
"content": "{\n\"original\": \"I love programming\",\n\"translated\": \"Ich liebe Programmierung\"\n}",
"additional_kwargs": {},
"response_metadata": {
"model": "llama3",
"created_at": "2024-08-01T17:24:54.35568Z",
"done_reason": "stop",
"done": true,
"total_duration": 1754811583,
"load_duration": 1297200208,
"prompt_eval_count": 47,
"prompt_eval_duration": 128532000,
"eval_count": 20,
"eval_duration": 318519000
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 47,
"output_tokens": 20,
"total_tokens": 67
}
}
多模态模型
Ollama 支持开源多模态模型,例如 LLaVA(在 0.1.15 及更高版本中)。您可以将图像作为消息的 content
字段的一部分传递给 多模态模型,如下所示
import { ChatOllama } from "@langchain/ollama";
import { HumanMessage } from "@langchain/core/messages";
import * as fs from "node:fs/promises";
const imageData = await fs.readFile("../../../../../examples/hotdog.jpg");
const llmForMultiModal = new ChatOllama({
model: "llava",
baseUrl: "http://127.0.0.1:11434",
});
const multiModalRes = await llmForMultiModal.invoke([
new HumanMessage({
content: [
{
type: "text",
text: "What is in this image?",
},
{
type: "image_url",
image_url: `data:image/jpeg;base64,${imageData.toString("base64")}`,
},
],
}),
]);
console.log(multiModalRes);
AIMessage {
"content": " The image shows a hot dog in a bun, which appears to be a footlong. It has been cooked or grilled to the point where it's browned and possibly has some blackened edges, indicating it might be slightly overcooked. Accompanying the hot dog is a bun that looks toasted as well. There are visible char marks on both the hot dog and the bun, suggesting they have been cooked directly over a source of heat, such as a grill or broiler. The background is white, which puts the focus entirely on the hot dog and its bun. ",
"additional_kwargs": {},
"response_metadata": {
"model": "llava",
"created_at": "2024-08-01T17:25:02.169957Z",
"done_reason": "stop",
"done": true,
"total_duration": 5700249458,
"load_duration": 2543040666,
"prompt_eval_count": 1,
"prompt_eval_duration": 1032591000,
"eval_count": 127,
"eval_duration": 2114201000
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 1,
"output_tokens": 127,
"total_tokens": 128
}
}
API 参考
有关所有 ChatOllama 功能和配置的详细文档,请前往 API 参考: https://api.js.langchain.com/classes/langchain_ollama.ChatOllama.html