跳至主要内容

Supabase 混合搜索

Langchain 支持使用 Supabase Postgres 数据库进行混合搜索。混合搜索结合了 postgres pgvector 扩展(相似度搜索)和全文搜索(关键词搜索)来检索文档。您可以通过 SupabaseVectorStore 的 addDocuments 函数添加文档。SupabaseHybridKeyWordSearch 接受嵌入、supabase 客户端、相似度搜索的结果数量和关键词搜索的结果数量作为参数。getRelevantDocuments 函数生成一个已删除重复项且按相关性得分排序的文档列表。

设置

使用以下命令安装库

npm install -S @supabase/supabase-js

在您的数据库中创建表和搜索函数

在您的数据库中运行以下代码

-- Enable the pgvector extension to work with embedding vectors
create extension vector;

-- Create a table to store your documents
create table documents (
id bigserial primary key,
content text, -- corresponds to Document.pageContent
metadata jsonb, -- corresponds to Document.metadata
embedding vector(1536) -- 1536 works for OpenAI embeddings, change if needed
);

-- Create a function to similarity search for documents
create function match_documents (
query_embedding vector(1536),
match_count int DEFAULT null,
filter jsonb DEFAULT '{}'
) returns table (
id bigint,
content text,
metadata jsonb,
similarity float
)
language plpgsql
as $$
#variable_conflict use_column
begin
return query
select
id,
content,
metadata,
1 - (documents.embedding <=> query_embedding) as similarity
from documents
where metadata @> filter
order by documents.embedding <=> query_embedding
limit match_count;
end;
$$;

-- Create a function to keyword search for documents
create function kw_match_documents(query_text text, match_count int)
returns table (id bigint, content text, metadata jsonb, similarity real)
as $$

begin
return query execute
format('select id, content, metadata, ts_rank(to_tsvector(content), plainto_tsquery($1)) as similarity
from documents
where to_tsvector(content) @@ plainto_tsquery($1)
order by similarity desc
limit $2')
using query_text, match_count;
end;
$$ language plpgsql;

用法

npm install @langchain/openai @langchain/community @langchain/core
import { OpenAIEmbeddings } from "@langchain/openai";
import { createClient } from "@supabase/supabase-js";
import { SupabaseHybridSearch } from "@langchain/community/retrievers/supabase";

export const run = async () => {
const client = createClient(
process.env.SUPABASE_URL || "",
process.env.SUPABASE_PRIVATE_KEY || ""
);

const embeddings = new OpenAIEmbeddings();

const retriever = new SupabaseHybridSearch(embeddings, {
client,
// Below are the defaults, expecting that you set up your supabase table and functions according to the guide above. Please change if necessary.
similarityK: 2,
keywordK: 2,
tableName: "documents",
similarityQueryName: "match_documents",
keywordQueryName: "kw_match_documents",
});

const results = await retriever.invoke("hello bye");

console.log(results);
};

API 参考


此页面是否有用?


您也可以留下详细的反馈 在 GitHub 上.