跳到主要内容

如何处理多个查询

先决条件

本指南假定您熟悉以下内容

有时,查询分析技术可能会生成多个查询。在这些情况下,我们需要记住运行所有查询,然后组合结果。我们将展示一个如何执行此操作的简单示例(使用模拟数据)。

设置

安装依赖项

提示

有关安装集成包的一般说明,请参阅此部分

yarn add @langchain/community @langchain/openai @langchain/core zod chromadb

设置环境变量

OPENAI_API_KEY=your-api-key

# Optional, use LangSmith for best-in-class observability
LANGSMITH_API_KEY=your-api-key
LANGSMITH_TRACING=true

# Reduce tracing latency if you are not in a serverless environment
# LANGCHAIN_CALLBACKS_BACKGROUND=true

创建索引

我们将基于虚假信息创建一个向量存储。

import { Chroma } from "@langchain/community/vectorstores/chroma";
import { OpenAIEmbeddings } from "@langchain/openai";
import "chromadb";

const texts = ["Harrison worked at Kensho", "Ankush worked at Facebook"];
const embeddings = new OpenAIEmbeddings({ model: "text-embedding-3-small" });
const vectorstore = await Chroma.fromTexts(texts, {}, embeddings, {
collectionName: "multi_query",
});
const retriever = vectorstore.asRetriever(1);

查询分析

我们将使用函数调用来构建输出结构。我们将允许它返回多个查询。

import { z } from "zod";

const searchSchema = z
.object({
queries: z.array(z.string()).describe("Distinct queries to search for"),
})
.describe("Search over a database of job records.");

选择你的聊天模型

安装依赖项

提示

请参阅 此部分,了解有关安装集成包的一般说明.

yarn add @langchain/groq 

添加环境变量

GROQ_API_KEY=your-api-key

实例化模型

import { ChatGroq } from "@langchain/groq";

const llm = new ChatGroq({
model: "llama-3.3-70b-versatile",
temperature: 0
});
import { ChatPromptTemplate } from "@langchain/core/prompts";
import {
RunnableSequence,
RunnablePassthrough,
} from "@langchain/core/runnables";

const system = `You have the ability to issue search queries to get information to help answer user information.

If you need to look up two distinct pieces of information, you are allowed to do that!`;

const prompt = ChatPromptTemplate.fromMessages([
["system", system],
["human", "{question}"],
]);
const llmWithTools = llm.withStructuredOutput(searchSchema, {
name: "Search",
});
const queryAnalyzer = RunnableSequence.from([
{
question: new RunnablePassthrough(),
},
prompt,
llmWithTools,
]);

我们可以看到,这允许创建多个查询

await queryAnalyzer.invoke("where did Harrison Work");
{ queries: [ "Harrison" ] }
await queryAnalyzer.invoke("where did Harrison and ankush Work");
{ queries: [ "Harrison work", "Ankush work" ] }

使用查询分析进行检索

那么我们如何将其包含在链中呢? 如果我们异步调用检索器,这将使事情变得容易得多 - 这将使我们能够循环遍历查询,而不会被响应时间阻塞。

import { RunnableConfig, RunnableLambda } from "@langchain/core/runnables";

const chain = async (question: string, config?: RunnableConfig) => {
const response = await queryAnalyzer.invoke(question, config);
const docs = [];
for (const query of response.queries) {
const newDocs = await retriever.invoke(query, config);
docs.push(...newDocs);
}
// You probably want to think about reranking or deduplicating documents here
// But that is a separate topic
return docs;
};

const customChain = new RunnableLambda({ func: chain });
await customChain.invoke("where did Harrison Work");
[ Document { pageContent: "Harrison worked at Kensho", metadata: {} } ]
await customChain.invoke("where did Harrison and ankush Work");
[
Document { pageContent: "Harrison worked at Kensho", metadata: {} },
Document { pageContent: "Ankush worked at Facebook", metadata: {} }
]

后续步骤

您现在已经学习了一些在查询分析系统中处理多个查询的技术。

接下来,查看本节中的其他查询分析指南,例如如何处理未生成任何查询的情况


此页面是否对您有帮助?


您也可以留下详细的反馈 在 GitHub 上.