如何处理多个查询
先决条件
本指南假定您熟悉以下内容
有时,查询分析技术可能会生成多个查询。在这些情况下,我们需要记住运行所有查询,然后组合结果。我们将展示一个如何执行此操作的简单示例(使用模拟数据)。
设置
安装依赖项
提示
有关安装集成包的一般说明,请参阅此部分。
- npm
- yarn
- pnpm
npm i @langchain/community @langchain/openai @langchain/core zod chromadb
yarn add @langchain/community @langchain/openai @langchain/core zod chromadb
pnpm add @langchain/community @langchain/openai @langchain/core zod chromadb
设置环境变量
OPENAI_API_KEY=your-api-key
# Optional, use LangSmith for best-in-class observability
LANGSMITH_API_KEY=your-api-key
LANGSMITH_TRACING=true
# Reduce tracing latency if you are not in a serverless environment
# LANGCHAIN_CALLBACKS_BACKGROUND=true
创建索引
我们将基于虚假信息创建一个向量存储。
import { Chroma } from "@langchain/community/vectorstores/chroma";
import { OpenAIEmbeddings } from "@langchain/openai";
import "chromadb";
const texts = ["Harrison worked at Kensho", "Ankush worked at Facebook"];
const embeddings = new OpenAIEmbeddings({ model: "text-embedding-3-small" });
const vectorstore = await Chroma.fromTexts(texts, {}, embeddings, {
collectionName: "multi_query",
});
const retriever = vectorstore.asRetriever(1);
查询分析
我们将使用函数调用来构建输出结构。我们将允许它返回多个查询。
import { z } from "zod";
const searchSchema = z
.object({
queries: z.array(z.string()).describe("Distinct queries to search for"),
})
.describe("Search over a database of job records.");
选择你的聊天模型
- Groq
- OpenAI
- Anthropic
- FireworksAI
- MistralAI
- VertexAI
安装依赖项
提示
请参阅 此部分,了解有关安装集成包的一般说明.
- npm
- yarn
- pnpm
npm i @langchain/groq
yarn add @langchain/groq
pnpm add @langchain/groq
添加环境变量
GROQ_API_KEY=your-api-key
实例化模型
import { ChatGroq } from "@langchain/groq";
const llm = new ChatGroq({
model: "llama-3.3-70b-versatile",
temperature: 0
});
安装依赖项
提示
请参阅 此部分,了解有关安装集成包的一般说明.
- npm
- yarn
- pnpm
npm i @langchain/openai
yarn add @langchain/openai
pnpm add @langchain/openai
添加环境变量
OPENAI_API_KEY=your-api-key
实例化模型
import { ChatOpenAI } from "@langchain/openai";
const llm = new ChatOpenAI({
model: "gpt-4o-mini",
temperature: 0
});
安装依赖项
提示
请参阅 此部分,了解有关安装集成包的一般说明.
- npm
- yarn
- pnpm
npm i @langchain/anthropic
yarn add @langchain/anthropic
pnpm add @langchain/anthropic
添加环境变量
ANTHROPIC_API_KEY=your-api-key
实例化模型
import { ChatAnthropic } from "@langchain/anthropic";
const llm = new ChatAnthropic({
model: "claude-3-5-sonnet-20240620",
temperature: 0
});
安装依赖项
提示
请参阅 此部分,了解有关安装集成包的一般说明.
- npm
- yarn
- pnpm
npm i @langchain/community
yarn add @langchain/community
pnpm add @langchain/community
添加环境变量
FIREWORKS_API_KEY=your-api-key
实例化模型
import { ChatFireworks } from "@langchain/community/chat_models/fireworks";
const llm = new ChatFireworks({
model: "accounts/fireworks/models/llama-v3p1-70b-instruct",
temperature: 0
});
安装依赖项
提示
请参阅 此部分,了解有关安装集成包的一般说明.
- npm
- yarn
- pnpm
npm i @langchain/mistralai
yarn add @langchain/mistralai
pnpm add @langchain/mistralai
添加环境变量
MISTRAL_API_KEY=your-api-key
实例化模型
import { ChatMistralAI } from "@langchain/mistralai";
const llm = new ChatMistralAI({
model: "mistral-large-latest",
temperature: 0
});
安装依赖项
提示
请参阅 此部分,了解有关安装集成包的一般说明.
- npm
- yarn
- pnpm
npm i @langchain/google-vertexai
yarn add @langchain/google-vertexai
pnpm add @langchain/google-vertexai
添加环境变量
GOOGLE_APPLICATION_CREDENTIALS=credentials.json
实例化模型
import { ChatVertexAI } from "@langchain/google-vertexai";
const llm = new ChatVertexAI({
model: "gemini-1.5-flash",
temperature: 0
});
import { ChatPromptTemplate } from "@langchain/core/prompts";
import {
RunnableSequence,
RunnablePassthrough,
} from "@langchain/core/runnables";
const system = `You have the ability to issue search queries to get information to help answer user information.
If you need to look up two distinct pieces of information, you are allowed to do that!`;
const prompt = ChatPromptTemplate.fromMessages([
["system", system],
["human", "{question}"],
]);
const llmWithTools = llm.withStructuredOutput(searchSchema, {
name: "Search",
});
const queryAnalyzer = RunnableSequence.from([
{
question: new RunnablePassthrough(),
},
prompt,
llmWithTools,
]);
我们可以看到,这允许创建多个查询
await queryAnalyzer.invoke("where did Harrison Work");
{ queries: [ "Harrison" ] }
await queryAnalyzer.invoke("where did Harrison and ankush Work");
{ queries: [ "Harrison work", "Ankush work" ] }
使用查询分析进行检索
那么我们如何将其包含在链中呢? 如果我们异步调用检索器,这将使事情变得容易得多 - 这将使我们能够循环遍历查询,而不会被响应时间阻塞。
import { RunnableConfig, RunnableLambda } from "@langchain/core/runnables";
const chain = async (question: string, config?: RunnableConfig) => {
const response = await queryAnalyzer.invoke(question, config);
const docs = [];
for (const query of response.queries) {
const newDocs = await retriever.invoke(query, config);
docs.push(...newDocs);
}
// You probably want to think about reranking or deduplicating documents here
// But that is a separate topic
return docs;
};
const customChain = new RunnableLambda({ func: chain });
await customChain.invoke("where did Harrison Work");
[ Document { pageContent: "Harrison worked at Kensho", metadata: {} } ]
await customChain.invoke("where did Harrison and ankush Work");
[
Document { pageContent: "Harrison worked at Kensho", metadata: {} },
Document { pageContent: "Ankush worked at Facebook", metadata: {} }
]
后续步骤
您现在已经学习了一些在查询分析系统中处理多个查询的技术。
接下来,查看本节中的其他查询分析指南,例如如何处理未生成任何查询的情况。