如何返回来源
先决条件
本指南假定您熟悉以下内容
通常在问答应用中,显示用于生成答案的来源非常重要。最简单的方法是让链返回在每次生成中检索到的文档。
我们将使用 Lilian Weng 的 LLM Powered Autonomous Agents 博客文章作为本 notebook 的检索内容。
设置
依赖项
在此演练中,我们将使用 OpenAI 聊天模型和嵌入,以及 Memory 向量存储,但此处显示的所有内容都适用于任何 ChatModel 或 LLM、Embeddings 和 VectorStore 或 Retriever。
我们将使用以下软件包
npm install --save langchain @langchain/openai cheerio
我们需要设置环境变量 OPENAI_API_KEY
export OPENAI_API_KEY=YOUR_KEY
LangSmith
您使用 LangChain 构建的许多应用程序将包含多个步骤,其中包含多次 LLM 调用。随着这些应用程序变得越来越复杂,能够检查链或代理内部究竟发生了什么是至关重要的。最好的方法是使用 LangSmith。
请注意,LangSmith 不是必需的,但它很有帮助。如果您想使用 LangSmith,请在上面的链接注册后,确保设置您的环境变量以开始记录追踪
export LANGSMITH_TRACING=true
export LANGSMITH_API_KEY=YOUR_KEY
# Reduce tracing latency if you are not in a serverless environment
# export LANGCHAIN_CALLBACKS_BACKGROUND=true
没有来源的链
这是我们在 快速入门 中基于 Lilian Weng 的 LLM Powered Autonomous Agents 博客文章构建的问答应用。
import "cheerio";
import { CheerioWebBaseLoader } from "@langchain/community/document_loaders/web/cheerio";
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter";
import { MemoryVectorStore } from "langchain/vectorstores/memory";
import { OpenAIEmbeddings, ChatOpenAI } from "@langchain/openai";
import { pull } from "langchain/hub";
import { ChatPromptTemplate } from "@langchain/core/prompts";
import { formatDocumentsAsString } from "langchain/util/document";
import {
RunnableSequence,
RunnablePassthrough,
} from "@langchain/core/runnables";
import { StringOutputParser } from "@langchain/core/output_parsers";
const loader = new CheerioWebBaseLoader(
"https://lilianweng.github.io/posts/2023-06-23-agent/"
);
const docs = await loader.load();
const textSplitter = new RecursiveCharacterTextSplitter({
chunkSize: 1000,
chunkOverlap: 200,
});
const splits = await textSplitter.splitDocuments(docs);
const vectorStore = await MemoryVectorStore.fromDocuments(
splits,
new OpenAIEmbeddings()
);
// Retrieve and generate using the relevant snippets of the blog.
const retriever = vectorStore.asRetriever();
const prompt = await pull<ChatPromptTemplate>("rlm/rag-prompt");
const llm = new ChatOpenAI({ model: "gpt-3.5-turbo", temperature: 0 });
const ragChain = RunnableSequence.from([
{
context: retriever.pipe(formatDocumentsAsString),
question: new RunnablePassthrough(),
},
prompt,
llm,
new StringOutputParser(),
]);
让我们看看这个提示实际上是什么样子的
console.log(prompt.promptMessages.map((msg) => msg.prompt.template).join("\n"));
You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise.
Question: {question}
Context: {context}
Answer:
await ragChain.invoke("What is task decomposition?");
"Task decomposition is a technique used to break down complex tasks into smaller and simpler steps. T"... 254 more characters
添加来源
使用 LCEL,我们可以轻松地将检索到的文档传递到链中,并在最终响应中返回它们
import {
RunnableMap,
RunnablePassthrough,
RunnableSequence,
} from "@langchain/core/runnables";
import { formatDocumentsAsString } from "langchain/util/document";
const ragChainWithSources = RunnableMap.from({
// Return raw documents here for now since we want to return them at
// the end - we'll format in the next step of the chain
context: retriever,
question: new RunnablePassthrough(),
}).assign({
answer: RunnableSequence.from([
(input) => {
return {
// Now we format the documents as strings for the prompt
context: formatDocumentsAsString(input.context),
question: input.question,
};
},
prompt,
llm,
new StringOutputParser(),
]),
});
await ragChainWithSources.invoke("What is Task Decomposition");
{
question: "What is Task Decomposition",
context: [
Document {
pageContent: "Fig. 1. Overview of a LLM-powered autonomous agent system.\n" +
"Component One: Planning#\n" +
"A complicated ta"... 898 more characters,
metadata: {
source: "https://lilianweng.github.io/posts/2023-06-23-agent/",
loc: { lines: [Object] }
}
},
Document {
pageContent: 'Task decomposition can be done (1) by LLM with simple prompting like "Steps for XYZ.\\n1.", "What are'... 887 more characters,
metadata: {
source: "https://lilianweng.github.io/posts/2023-06-23-agent/",
loc: { lines: [Object] }
}
},
Document {
pageContent: "Agent System Overview\n" +
" \n" +
" Component One: Planning\n" +
" "... 850 more characters,
metadata: {
source: "https://lilianweng.github.io/posts/2023-06-23-agent/",
loc: { lines: [Object] }
}
},
Document {
pageContent: "Resources:\n" +
"1. Internet access for searches and information gathering.\n" +
"2. Long Term memory management"... 456 more characters,
metadata: {
source: "https://lilianweng.github.io/posts/2023-06-23-agent/",
loc: { lines: [Object] }
}
}
],
answer: "Task decomposition is a technique used to break down complex tasks into smaller and simpler steps fo"... 230 more characters
}
查看 LangSmith 追踪,查看链的内部结构。
下一步
您现在已经学习了如何从问答链返回来源。
接下来,查看一些关于 RAG 的其他指南,例如如何流式传输响应。