跳至主要内容

如何在聊天模型中使用少量示例

本指南介绍如何使用示例输入和输出提示聊天模型。为模型提供一些这样的示例称为少量提示,这是一种简单而强大的方法来指导生成,在某些情况下可以极大地提高模型性能。

关于如何最好地进行少量提示似乎没有达成一致意见,最佳提示编译可能因模型而异。因此,我们提供了一些提示模板,例如 FewShotChatMessagePromptTemplate 作为灵活的起点,您可以根据需要修改或替换它们。

少量提示模板的目的是根据输入动态选择示例,然后将示例格式化为最终提示以提供给模型。

注意:以下代码示例仅适用于聊天模型,因为 FewShotChatMessagePromptTemplates 被设计为输出格式化的 聊天消息 而不是纯字符串。有关与完成模型 (LLM) 兼容的纯字符串模板的类似少量提示示例,请参阅 少量提示模板 指南。

先决条件

本指南假设您熟悉以下概念

固定示例

最基本(也是最常见)的少量提示技术是使用固定提示示例。这样,您就可以选择一条链,对其进行评估,并在生产中避免担心额外的活动部件。

模板的基本组成部分是:- examples:要在最终提示中包含的对象示例数组。- examplePrompt:通过其 formatMessages 方法将每个示例转换为一条或多条消息。一个常见示例是将每个示例转换为一条人类消息和一条 AI 消息响应,或一条人类消息后跟一条函数调用消息。

以下是一个简单的演示。首先,定义您要包含的示例

import {
ChatPromptTemplate,
FewShotChatMessagePromptTemplate,
} from "@langchain/core/prompts";

const examples = [
{ input: "2+2", output: "4" },
{ input: "2+3", output: "5" },
];

接下来,将它们组合成少量提示模板。

// This is a prompt template used to format each individual example.
const examplePrompt = ChatPromptTemplate.fromMessages([
["human", "{input}"],
["ai", "{output}"],
]);
const fewShotPrompt = new FewShotChatMessagePromptTemplate({
examplePrompt,
examples,
inputVariables: [], // no input variables
});

const result = await fewShotPrompt.invoke({});
console.log(result.toChatMessages());
[
HumanMessage {
lc_serializable: true,
lc_kwargs: { content: "2+2", additional_kwargs: {}, response_metadata: {} },
lc_namespace: [ "langchain_core", "messages" ],
content: "2+2",
name: undefined,
additional_kwargs: {},
response_metadata: {}
},
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: "4",
tool_calls: [],
invalid_tool_calls: [],
additional_kwargs: {},
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "4",
name: undefined,
additional_kwargs: {},
response_metadata: {},
tool_calls: [],
invalid_tool_calls: []
},
HumanMessage {
lc_serializable: true,
lc_kwargs: { content: "2+3", additional_kwargs: {}, response_metadata: {} },
lc_namespace: [ "langchain_core", "messages" ],
content: "2+3",
name: undefined,
additional_kwargs: {},
response_metadata: {}
},
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: "5",
tool_calls: [],
invalid_tool_calls: [],
additional_kwargs: {},
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "5",
name: undefined,
additional_kwargs: {},
response_metadata: {},
tool_calls: [],
invalid_tool_calls: []
}
]

最后,我们按照以下所示组装最终提示,将 fewShotPrompt 直接传递到 fromMessages 工厂方法中,并将其与模型一起使用

const finalPrompt = ChatPromptTemplate.fromMessages([
["system", "You are a wondrous wizard of math."],
fewShotPrompt,
["human", "{input}"],
]);

选择您的聊天模型

安装依赖项

yarn add @langchain/openai 

添加环境变量

OPENAI_API_KEY=your-api-key

实例化模型

import { ChatOpenAI } from "@langchain/openai";

const model = new ChatOpenAI({
model: "gpt-4o-mini",
temperature: 0
});
const chain = finalPrompt.pipe(model);

await chain.invoke({ input: "What's the square of a triangle?" });
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: "A triangle does not have a square. The square of a number is the result of multiplying the number by"... 8 more characters,
tool_calls: [],
invalid_tool_calls: [],
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "A triangle does not have a square. The square of a number is the result of multiplying the number by"... 8 more characters,
name: undefined,
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {
tokenUsage: { completionTokens: 23, promptTokens: 52, totalTokens: 75 },
finish_reason: "stop"
},
tool_calls: [],
invalid_tool_calls: []
}

动态少量提示

有时您可能希望根据输入只从整体示例集中选择几个示例来显示。为此,您可以用 exampleSelector 替换传递到 FewShotChatMessagePromptTemplateexamples。其他组件与上面相同!我们的动态少样本提示模板将如下所示

  • exampleSelector:负责为给定输入选择少样本示例(以及返回的顺序)。这些实现了 BaseExampleSelector 接口。一个常见的示例是基于向量存储的 SemanticSimilarityExampleSelector
  • examplePrompt:通过其 formatMessages 方法将每个示例转换为 1 个或多个消息。一个常见的示例是将每个示例转换为一条人类消息和一条 AI 消息回复,或一条人类消息后跟一条函数调用消息。

这些还可以与其他消息和聊天模板组合,以组装最终提示。

让我们以 SemanticSimilarityExampleSelector 为例。由于此实现使用向量存储根据语义相似性选择示例,因此我们将首先填充存储。由于这里的基本思想是希望搜索并返回与文本输入最相似的示例,因此我们将嵌入提示示例的 values,而不是考虑键

import { SemanticSimilarityExampleSelector } from "@langchain/core/example_selectors";
import { MemoryVectorStore } from "langchain/vectorstores/memory";
import { OpenAIEmbeddings } from "@langchain/openai";

const examples = [
{ input: "2+2", output: "4" },
{ input: "2+3", output: "5" },
{ input: "2+4", output: "6" },
{ input: "What did the cow say to the moon?", output: "nothing at all" },
{
input: "Write me a poem about the moon",
output:
"One for the moon, and one for me, who are we to talk about the moon?",
},
];

const toVectorize = examples.map(
(example) => `${example.input} ${example.output}`
);
const embeddings = new OpenAIEmbeddings();
const vectorStore = await MemoryVectorStore.fromTexts(
toVectorize,
examples,
embeddings
);

创建 exampleSelector

创建了向量存储后,我们可以创建 exampleSelector。在这里我们将单独调用它,并将其上的 k 设置为仅获取与输入最接近的两个示例。

const exampleSelector = new SemanticSimilarityExampleSelector({
vectorStore,
k: 2,
});

// The prompt template will load examples by passing the input do the `select_examples` method
await exampleSelector.selectExamples({ input: "horse" });
[
{
input: "What did the cow say to the moon?",
output: "nothing at all"
},
{ input: "2+4", output: "6" }
]

创建提示模板

现在我们将使用上面创建的 exampleSelector 组装提示模板。

import {
ChatPromptTemplate,
FewShotChatMessagePromptTemplate,
} from "@langchain/core/prompts";

// Define the few-shot prompt.
const fewShotPrompt = new FewShotChatMessagePromptTemplate({
// The input variables select the values to pass to the example_selector
inputVariables: ["input"],
exampleSelector,
// Define how ech example will be formatted.
// In this case, each example will become 2 messages:
// 1 human, and 1 AI
examplePrompt: ChatPromptTemplate.fromMessages([
["human", "{input}"],
["ai", "{output}"],
]),
});

const results = await fewShotPrompt.invoke({ input: "What's 3+3?" });
console.log(results.toChatMessages());
[
HumanMessage {
lc_serializable: true,
lc_kwargs: { content: "2+3", additional_kwargs: {}, response_metadata: {} },
lc_namespace: [ "langchain_core", "messages" ],
content: "2+3",
name: undefined,
additional_kwargs: {},
response_metadata: {}
},
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: "5",
tool_calls: [],
invalid_tool_calls: [],
additional_kwargs: {},
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "5",
name: undefined,
additional_kwargs: {},
response_metadata: {},
tool_calls: [],
invalid_tool_calls: []
},
HumanMessage {
lc_serializable: true,
lc_kwargs: { content: "2+2", additional_kwargs: {}, response_metadata: {} },
lc_namespace: [ "langchain_core", "messages" ],
content: "2+2",
name: undefined,
additional_kwargs: {},
response_metadata: {}
},
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: "4",
tool_calls: [],
invalid_tool_calls: [],
additional_kwargs: {},
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "4",
name: undefined,
additional_kwargs: {},
response_metadata: {},
tool_calls: [],
invalid_tool_calls: []
}
]

我们可以将此少样本聊天消息提示模板传递给另一个聊天提示模板

const finalPrompt = ChatPromptTemplate.fromMessages([
["system", "You are a wondrous wizard of math."],
fewShotPrompt,
["human", "{input}"],
]);

const result = await fewShotPrompt.invoke({ input: "What's 3+3?" });
console.log(result);
ChatPromptValue {
lc_serializable: true,
lc_kwargs: {
messages: [
HumanMessage {
lc_serializable: true,
lc_kwargs: {
content: "2+3",
additional_kwargs: {},
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "2+3",
name: undefined,
additional_kwargs: {},
response_metadata: {}
},
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: "5",
tool_calls: [],
invalid_tool_calls: [],
additional_kwargs: {},
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "5",
name: undefined,
additional_kwargs: {},
response_metadata: {},
tool_calls: [],
invalid_tool_calls: []
},
HumanMessage {
lc_serializable: true,
lc_kwargs: {
content: "2+2",
additional_kwargs: {},
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "2+2",
name: undefined,
additional_kwargs: {},
response_metadata: {}
},
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: "4",
tool_calls: [],
invalid_tool_calls: [],
additional_kwargs: {},
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "4",
name: undefined,
additional_kwargs: {},
response_metadata: {},
tool_calls: [],
invalid_tool_calls: []
}
]
},
lc_namespace: [ "langchain_core", "prompt_values" ],
messages: [
HumanMessage {
lc_serializable: true,
lc_kwargs: { content: "2+3", additional_kwargs: {}, response_metadata: {} },
lc_namespace: [ "langchain_core", "messages" ],
content: "2+3",
name: undefined,
additional_kwargs: {},
response_metadata: {}
},
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: "5",
tool_calls: [],
invalid_tool_calls: [],
additional_kwargs: {},
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "5",
name: undefined,
additional_kwargs: {},
response_metadata: {},
tool_calls: [],
invalid_tool_calls: []
},
HumanMessage {
lc_serializable: true,
lc_kwargs: { content: "2+2", additional_kwargs: {}, response_metadata: {} },
lc_namespace: [ "langchain_core", "messages" ],
content: "2+2",
name: undefined,
additional_kwargs: {},
response_metadata: {}
},
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: "4",
tool_calls: [],
invalid_tool_calls: [],
additional_kwargs: {},
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "4",
name: undefined,
additional_kwargs: {},
response_metadata: {},
tool_calls: [],
invalid_tool_calls: []
}
]
}

与聊天模型一起使用

最后,您可以将模型连接到少样本提示。

选择您的聊天模型

安装依赖项

yarn add @langchain/openai 

添加环境变量

OPENAI_API_KEY=your-api-key

实例化模型

import { ChatOpenAI } from "@langchain/openai";

const model = new ChatOpenAI({
model: "gpt-4o-mini",
temperature: 0
});
const chain = finalPrompt.pipe(model);

await chain.invoke({ input: "What's 3+3?" });
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: "6",
tool_calls: [],
invalid_tool_calls: [],
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "6",
name: undefined,
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {
tokenUsage: { completionTokens: 1, promptTokens: 51, totalTokens: 52 },
finish_reason: "stop"
},
tool_calls: [],
invalid_tool_calls: []
}

下一步

您现在已经了解了如何将少样本示例添加到您的聊天提示中。

接下来,查看本节中有关提示模板的其他操作指南,有关 使用文本完成模型进行少样本训练 的相关操作指南,或其他 示例选择器操作指南


此页面对您有帮助吗?


您也可以留下详细的反馈 在 GitHub 上.