跳至主要内容

Vercel Postgres

LangChain.js 支持使用@vercel/postgres 包将通用 Postgres 数据库用作向量存储,前提是它们支持pgvector Postgres 扩展。

这种集成在 Edge 函数等 Web 环境中特别有用。

设置

要使用 Vercel Postgres,您需要安装 @vercel/postgres

npm install @vercel/postgres
npm install @langchain/community

此集成使用 process.env.POSTGRES_URL 下设置的连接字符串自动连接。您也可以像这样手动传递连接字符串

const vectorstore = await VercelPostgres.initialize(new OpenAIEmbeddings(), {
postgresConnectionOptions: {
connectionString:
"postgres://<username>:<password>@<hostname>:<port>/<dbname>",
},
});

连接到 Vercel Postgres

入门的一种简单方法是创建一个无服务器Vercel Postgres 实例。如果您要部署到与相关 Vercel Postgres 实例相关的 Vercel 项目,则所需的 POSTGRES_URL 环境变量将已在托管环境中填充。

连接到其他数据库

如果您更喜欢托管自己的 Postgres 实例,则可以使用类似于 LangChain 的PGVector 向量存储集成的流程,并将连接字符串设置为环境变量或如上所示。

用法

import { CohereEmbeddings } from "@langchain/cohere";
import { VercelPostgres } from "@langchain/community/vectorstores/vercel_postgres";

// Config is only required if you want to override default values.
const config = {
// tableName: "testvercelvectorstorelangchain",
// postgresConnectionOptions: {
// connectionString: "postgres://<username>:<password>@<hostname>:<port>/<dbname>",
// },
// columns: {
// idColumnName: "id",
// vectorColumnName: "vector",
// contentColumnName: "content",
// metadataColumnName: "metadata",
// },
};

const vercelPostgresStore = await VercelPostgres.initialize(
new CohereEmbeddings({ model: "embed-english-v3.0" }),
config
);

const docHello = {
pageContent: "hello",
metadata: { topic: "nonsense" },
};
const docHi = { pageContent: "hi", metadata: { topic: "nonsense" } };
const docMitochondria = {
pageContent: "Mitochondria is the powerhouse of the cell",
metadata: { topic: "science" },
};

const ids = await vercelPostgresStore.addDocuments([
docHello,
docHi,
docMitochondria,
]);

const results = await vercelPostgresStore.similaritySearch("hello", 2);
console.log(results);
/*
[
Document { pageContent: 'hello', metadata: { topic: 'nonsense' } },
Document { pageContent: 'hi', metadata: { topic: 'nonsense' } }
]
*/

// Metadata filtering
const results2 = await vercelPostgresStore.similaritySearch(
"Irrelevant query, metadata filtering",
2,
{
topic: "science",
}
);
console.log(results2);
/*
[
Document {
pageContent: 'Mitochondria is the powerhouse of the cell',
metadata: { topic: 'science' }
}
]
*/

// Metadata filtering with IN-filters works as well
const results3 = await vercelPostgresStore.similaritySearch(
"Irrelevant query, metadata filtering",
3,
{
topic: { in: ["science", "nonsense"] },
}
);
console.log(results3);
/*
[
Document {
pageContent: 'hello',
metadata: { topic: 'nonsense' }
},
Document {
pageContent: 'hi',
metadata: { topic: 'nonsense' }
},
Document {
pageContent: 'Mitochondria is the powerhouse of the cell',
metadata: { topic: 'science' }
}
]
*/

// Upserting is supported as well
await vercelPostgresStore.addDocuments(
[
{
pageContent: "ATP is the powerhouse of the cell",
metadata: { topic: "science" },
},
],
{ ids: [ids[2]] }
);

const results4 = await vercelPostgresStore.similaritySearch(
"What is the powerhouse of the cell?",
1
);
console.log(results4);
/*
[
Document {
pageContent: 'ATP is the powerhouse of the cell',
metadata: { topic: 'science' }
}
]
*/

await vercelPostgresStore.delete({ ids: [ids[2]] });

const results5 = await vercelPostgresStore.similaritySearch(
"No more metadata",
2,
{
topic: "science",
}
);
console.log(results5);
/*
[]
*/

// Remember to call .end() to close the connection!
await vercelPostgresStore.end();

API 参考


此页面是否有帮助?


您也可以在 GitHub 上留下详细的反馈 GitHub.