Supabase 混合搜索
Langchain 支持使用 Supabase Postgres 数据库进行混合搜索。混合搜索结合了 postgres pgvector
扩展(相似性搜索)和全文搜索(关键字搜索)来检索文档。您可以通过 SupabaseVectorStore addDocuments
函数添加文档。SupabaseHybridKeyWordSearch 接受嵌入、supabase 客户端、相似性搜索的结果数量和关键字搜索的结果数量作为参数。getRelevantDocuments
函数生成一个去重并按相关性分数排序的文档列表。
设置
使用以下方法安装库
- npm
- Yarn
- pnpm
npm install -S @supabase/supabase-js
yarn add @supabase/supabase-js
pnpm add @supabase/supabase-js
在您的数据库中创建表和搜索函数
在您的数据库中运行以下代码
-- Enable the pgvector extension to work with embedding vectors
create extension vector;
-- Create a table to store your documents
create table documents (
id bigserial primary key,
content text, -- corresponds to Document.pageContent
metadata jsonb, -- corresponds to Document.metadata
embedding vector(1536) -- 1536 works for OpenAI embeddings, change if needed
);
-- Create a function to similarity search for documents
create function match_documents (
query_embedding vector(1536),
match_count int DEFAULT null,
filter jsonb DEFAULT '{}'
) returns table (
id bigint,
content text,
metadata jsonb,
similarity float
)
language plpgsql
as $$
#variable_conflict use_column
begin
return query
select
id,
content,
metadata,
1 - (documents.embedding <=> query_embedding) as similarity
from documents
where metadata @> filter
order by documents.embedding <=> query_embedding
limit match_count;
end;
$$;
-- Create a function to keyword search for documents
create function kw_match_documents(query_text text, match_count int)
returns table (id bigint, content text, metadata jsonb, similarity real)
as $$
begin
return query execute
format('select id, content, metadata, ts_rank(to_tsvector(content), plainto_tsquery($1)) as similarity
from documents
where to_tsvector(content) @@ plainto_tsquery($1)
order by similarity desc
limit $2')
using query_text, match_count;
end;
$$ language plpgsql;
用法
提示
- npm
- Yarn
- pnpm
npm install @langchain/openai @langchain/community
yarn add @langchain/openai @langchain/community
pnpm add @langchain/openai @langchain/community
import { OpenAIEmbeddings } from "@langchain/openai";
import { createClient } from "@supabase/supabase-js";
import { SupabaseHybridSearch } from "@langchain/community/retrievers/supabase";
export const run = async () => {
const client = createClient(
process.env.SUPABASE_URL || "",
process.env.SUPABASE_PRIVATE_KEY || ""
);
const embeddings = new OpenAIEmbeddings();
const retriever = new SupabaseHybridSearch(embeddings, {
client,
// Below are the defaults, expecting that you set up your supabase table and functions according to the guide above. Please change if necessary.
similarityK: 2,
keywordK: 2,
tableName: "documents",
similarityQueryName: "match_documents",
keywordQueryName: "kw_match_documents",
});
const results = await retriever.invoke("hello bye");
console.log(results);
};
API 参考
- OpenAIEmbeddings 来自
@langchain/openai
- SupabaseHybridSearch 来自
@langchain/community/retrievers/supabase