跳至主要内容

ChatOllama

Ollama 允许您在本地运行开源大型语言模型,例如 Llama 3.1。

Ollama 将模型权重、配置和数据捆绑到一个单一包中,由 Modelfile 定义。它优化了设置和配置细节,包括 GPU 使用。

本指南将帮助您开始使用 ChatOllama 聊天模型。有关所有 ChatOllama 功能和配置的详细文档,请访问 API 参考

概述

集成详细信息

Ollama 允许您使用各种具有不同功能的模型。以下详细信息表中的某些字段仅适用于 Ollama 提供的模型子集。

有关支持的模型和模型变体的完整列表,请查看 Ollama 模型库,并按标签进行搜索。

本地可序列化PY 支持包下载包最新
ChatOllama@langchain/ollamabetaNPM - DownloadsNPM - Version

模型功能

请参阅以下表头中的链接,了解有关如何使用特定功能的指南。

工具调用结构化输出JSON 模式图像输入音频输入视频输入令牌级流式传输令牌使用Logprobs

设置

按照 这些说明 设置并运行本地 Ollama 实例。然后,下载 @langchain/ollama 包。

凭据

如果您希望获得模型调用的自动跟踪,也可以通过取消以下注释来设置您的 LangSmith API 密钥

# export LANGCHAIN_TRACING_V2="true"
# export LANGCHAIN_API_KEY="your-api-key"

安装

LangChain ChatOllama 集成位于 @langchain/ollama 包中

yarn add @langchain/ollama

实例化

现在我们可以实例化我们的模型对象并生成聊天完成

import { ChatOllama } from "@langchain/ollama";

const llm = new ChatOllama({
model: "llama3",
temperature: 0,
maxRetries: 2,
// other params...
});

调用

const aiMsg = await llm.invoke([
[
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
],
["human", "I love programming."],
]);
aiMsg;
AIMessage {
"content": "Je adore le programmation.\n\n(Note: \"programmation\" is the feminine form of the noun in French, but if you want to use the masculine form, it would be \"le programme\" instead.)",
"additional_kwargs": {},
"response_metadata": {
"model": "llama3",
"created_at": "2024-08-01T16:59:17.359302Z",
"done_reason": "stop",
"done": true,
"total_duration": 6399311167,
"load_duration": 5575776417,
"prompt_eval_count": 35,
"prompt_eval_duration": 110053000,
"eval_count": 43,
"eval_duration": 711744000
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 35,
"output_tokens": 43,
"total_tokens": 78
}
}
console.log(aiMsg.content);
Je adore le programmation.

(Note: "programmation" is the feminine form of the noun in French, but if you want to use the masculine form, it would be "le programme" instead.)

链接

我们可以像这样使用提示模板将我们的模型 链接

import { ChatPromptTemplate } from "@langchain/core/prompts";

const prompt = ChatPromptTemplate.fromMessages([
[
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
],
["human", "{input}"],
]);

const chain = prompt.pipe(llm);
await chain.invoke({
input_language: "English",
output_language: "German",
input: "I love programming.",
});
AIMessage {
"content": "Ich liebe Programmieren!\n\n(Note: \"Ich liebe\" means \"I love\", \"Programmieren\" is the verb for \"programming\")",
"additional_kwargs": {},
"response_metadata": {
"model": "llama3",
"created_at": "2024-08-01T16:59:18.088423Z",
"done_reason": "stop",
"done": true,
"total_duration": 585146125,
"load_duration": 27557166,
"prompt_eval_count": 30,
"prompt_eval_duration": 74241000,
"eval_count": 29,
"eval_duration": 481195000
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 30,
"output_tokens": 29,
"total_tokens": 59
}
}

工具

Ollama 现在支持本地工具调用 适用于其可用模型的子集。以下示例演示了如何从 Ollama 模型调用工具。

import { tool } from "@langchain/core/tools";
import { ChatOllama } from "@langchain/ollama";
import { z } from "zod";

const weatherTool = tool((_) => "Da weather is weatherin", {
name: "get_current_weather",
description: "Get the current weather in a given location",
schema: z.object({
location: z.string().describe("The city and state, e.g. San Francisco, CA"),
}),
});

// Define the model
const llmForTool = new ChatOllama({
model: "llama3-groq-tool-use",
});

// Bind the tool to the model
const llmWithTools = llmForTool.bindTools([weatherTool]);

const resultFromTool = await llmWithTools.invoke(
"What's the weather like today in San Francisco? Ensure you use the 'get_current_weather' tool."
);

console.log(resultFromTool);
AIMessage {
"content": "",
"additional_kwargs": {},
"response_metadata": {
"model": "llama3-groq-tool-use",
"created_at": "2024-08-01T18:43:13.2181Z",
"done_reason": "stop",
"done": true,
"total_duration": 2311023875,
"load_duration": 1560670292,
"prompt_eval_count": 177,
"prompt_eval_duration": 263603000,
"eval_count": 30,
"eval_duration": 485582000
},
"tool_calls": [
{
"name": "get_current_weather",
"args": {
"location": "San Francisco, CA"
},
"id": "c7a9d590-99ad-42af-9996-41b90efcf827",
"type": "tool_call"
}
],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 177,
"output_tokens": 30,
"total_tokens": 207
}
}

.withStructuredOutput

对于 支持工具调用的模型,您还可以调用 .withStructuredOutput() 以从工具获取结构化输出。

import { ChatOllama } from "@langchain/ollama";
import { z } from "zod";

// Define the model
const llmForWSO = new ChatOllama({
model: "llama3-groq-tool-use",
});

// Define the tool schema you'd like the model to use.
const schemaForWSO = z.object({
location: z.string().describe("The city and state, e.g. San Francisco, CA"),
});

// Pass the schema to the withStructuredOutput method to bind it to the model.
const llmWithStructuredOutput = llmForWSO.withStructuredOutput(schemaForWSO, {
name: "get_current_weather",
});

const resultFromWSO = await llmWithStructuredOutput.invoke(
"What's the weather like today in San Francisco? Ensure you use the 'get_current_weather' tool."
);
console.log(resultFromWSO);
{ location: 'San Francisco, CA' }

JSON 模式

Ollama 还支持适用于所有聊天模型的 JSON 模式,该模式强制模型输出仅返回 JSON。以下是如何使用此功能进行提取的示例

import { ChatOllama } from "@langchain/ollama";
import { ChatPromptTemplate } from "@langchain/core/prompts";

const promptForJsonMode = ChatPromptTemplate.fromMessages([
[
"system",
`You are an expert translator. Format all responses as JSON objects with two keys: "original" and "translated".`,
],
["human", `Translate "{input}" into {language}.`],
]);

const llmJsonMode = new ChatOllama({
baseUrl: "http://localhost:11434", // Default value
model: "llama3",
format: "json",
});

const chainForJsonMode = promptForJsonMode.pipe(llmJsonMode);

const resultFromJsonMode = await chainForJsonMode.invoke({
input: "I love programming",
language: "German",
});

console.log(resultFromJsonMode);
AIMessage {
"content": "{\n\"original\": \"I love programming\",\n\"translated\": \"Ich liebe Programmierung\"\n}",
"additional_kwargs": {},
"response_metadata": {
"model": "llama3",
"created_at": "2024-08-01T17:24:54.35568Z",
"done_reason": "stop",
"done": true,
"total_duration": 1754811583,
"load_duration": 1297200208,
"prompt_eval_count": 47,
"prompt_eval_duration": 128532000,
"eval_count": 20,
"eval_duration": 318519000
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 47,
"output_tokens": 20,
"total_tokens": 67
}
}

多模态模型

Ollama 支持开源多模态模型,例如 LLaVA(在版本 0.1.15 及更高版本中)。您可以将图像作为消息 content 字段的一部分传递给像这样 支持多模态 的模型

import { ChatOllama } from "@langchain/ollama";
import { HumanMessage } from "@langchain/core/messages";
import * as fs from "node:fs/promises";

const imageData = await fs.readFile("../../../../../examples/hotdog.jpg");
const llmForMultiModal = new ChatOllama({
model: "llava",
baseUrl: "http://127.0.0.1:11434",
});
const multiModalRes = await llmForMultiModal.invoke([
new HumanMessage({
content: [
{
type: "text",
text: "What is in this image?",
},
{
type: "image_url",
image_url: `data:image/jpeg;base64,${imageData.toString("base64")}`,
},
],
}),
]);
console.log(multiModalRes);
AIMessage {
"content": " The image shows a hot dog in a bun, which appears to be a footlong. It has been cooked or grilled to the point where it's browned and possibly has some blackened edges, indicating it might be slightly overcooked. Accompanying the hot dog is a bun that looks toasted as well. There are visible char marks on both the hot dog and the bun, suggesting they have been cooked directly over a source of heat, such as a grill or broiler. The background is white, which puts the focus entirely on the hot dog and its bun. ",
"additional_kwargs": {},
"response_metadata": {
"model": "llava",
"created_at": "2024-08-01T17:25:02.169957Z",
"done_reason": "stop",
"done": true,
"total_duration": 5700249458,
"load_duration": 2543040666,
"prompt_eval_count": 1,
"prompt_eval_duration": 1032591000,
"eval_count": 127,
"eval_duration": 2114201000
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 1,
"output_tokens": 127,
"total_tokens": 128
}
}

API 参考

有关所有 ChatOllama 功能和配置的详细文档,请访问 API 参考:https://api.js.langchain.com/classes/langchain_ollama.ChatOllama.html


此页面对您有帮助吗?


您也可以留下详细的反馈 在 GitHub 上.